فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

JAIN A.K. | MURTY M.N. | FLYNN P.J.

نشریه: 

ACM COMPUTING SURVEYS

اطلاعات دوره: 
  • سال: 

    1999
  • دوره: 

    31
  • شماره: 

    3
  • صفحات: 

    264-323
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    117
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 117

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    30
  • شماره: 

    4
  • صفحات: 

    1025-1049
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1384
  • دانلود: 

    544
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1384

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 544 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

VAN DER MERWE D.W. | ENGELBRECHT A.P.

اطلاعات دوره: 
  • سال: 

    2003
  • دوره: 

    1
  • شماره: 

    -
  • صفحات: 

    215-220
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    128
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 128

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

شهریاری م.ر.

اطلاعات دوره: 
  • سال: 

    1395
  • دوره: 

    8
  • شماره: 

    2
  • صفحات: 

    99-106
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    758
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

متن کامل این مقاله به زبان انگلیسی می باشد، لطفا برای مشاهده متن کامل مقاله به بخش انگلیسی مراجعه فرمایید.لطفا برای مشاهده متن کامل این مقاله اینجا را کلیک کنید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 758

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1397
  • دوره: 

    14
  • شماره: 

    4 (پیاپی 34)
  • صفحات: 

    31-42
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    744
  • دانلود: 

    196
چکیده: 

خوشه بندی یکی از عناصر اصلی سازنده در بینایی رایانه و یادگیری ماشین است. چالش اصلی، یافتن راهی مناسب برای پیدا کردن زیر مجموعه ای از نمونه های شاخص و ساختارهای خوشه ای مرتبط با آنها، با درنظر گرفتن یک معیار فاصله دوبه دو، است. در این مقاله شیوه ای جدید برای خوشه بندی پیشنهاد می شود که به صورت تکرار شونده، عناصر کلیدی یک مجموعه داده ای را بر پایه یک تابع هدف مناسب، پیدا می کند. آزمایش های تجربی متعدد بیان گر برتری روش پیشنهاد شده نسبت به روش های موجود، هم از نظر بهینگی و هم از نظر موثر بودن، است. علاوه بر این، روش پیشنهادی برای خوشه بندی داده های با مقیاس بالا توسعه داده می شود؛ به صورتی که میلیون ها داده را در چند ثانیه می توان پردازش کرد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 744

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 196 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    205-215
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    136
  • دانلود: 

    23
چکیده: 

Distance-based Clustering methods categorize samples by optimizing a global criterion, finding ellipsoid clusters with roughly equal sizes. In contrast, density-based Clustering techniques form clusters with arbitrary shapes and sizes by optimizing a local criterion. Most of these methods have several hyper-parameters, and their performance is highly dependent on the hyper-parameter setup. Recently, a Gaussian Density Distance (GDD) approach was proposed to optimize local criteria in terms of distance and density properties of samples. GDD can find clusters with different shapes and sizes without any free parameters. However, it may fail to discover the appropriate clusters due to the interfering of clustered samples in estimating the density and distance properties of remaining unclustered samples. Here, we introduce Adaptive GDD (AGDD), which eliminates the inappropriate effect of clustered samples by adaptively updating the parameters during Clustering. It is stable and can identify clusters with various shapes, sizes, and densities without adding extra parameters. The distance metrics calculating the dissimilarity between samples can affect the Clustering performance. The effect of different distance measurements is also analyzed on the method. The experimental results conducted on several well-known Datasets show the effectiveness of the proposed AGDD method compared to the other well-known Clustering methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 136

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 23 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

HAMMOUDA K. | KARRAY F.

نشریه: 

VIRTUAL

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    1-20
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    146
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 146

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
  • شماره: 

    4
  • صفحات: 

    396-411
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    36
  • دانلود: 

    0
چکیده: 

In the last few decades, in many research fields, different methods were introduced to discover groups with the same trends in longitudinal Data. The Clustering process is an unsupervised learning method, which classifies longitudinal Data based on different criteria by performing algorithms. The current study was performed with the aim of reviewing various methods of longitudinal Data Clustering, including two general categories of non-parametric methods and model-based methods. PubMed, SCOPUS, ISI, Ovid, and Google Scholar were searched between 2000 and 2021. According to our systematic review, the non-parametric k-means Clustering Method utilizing Euclidean distance emerges as a leading approach for Clustering longitudinal Data This research, with an overview of the studies done in the field of Clustering, can help researchers as a toolbox to choose various methods of longitudinal Data Clustering in idea generation and choosing the appropriate method in the classification and analysis of longitudinal Data.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 36

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 5
نویسندگان: 

JAFAR TAFRESHI LEILA | YAGHMAEE FARZIN

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    4
  • شماره: 

    3
  • صفحات: 

    167-173
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    375
  • دانلود: 

    0
چکیده: 

Data mining and knowledge discovery are important technologies for business and research. Despite their benefits in various areas such as marketing, business and medical analysis, the use of Data mining techniques can also result in new threats to privacy and information security. Therefore, a new class of Data mining methods called privacy preserving Data mining (PPDM) has been developed. The aim of researches in this field is to develop techniques those could be applied to Databases without violating the privacy of individuals. In this work we introduce a new approach to preserve sensitive information in Databases with both numerical and categorical attributes using fuzzy logic. We map a Database into a new one that conceals private information while preserving mining benefits. In our proposed method, we use fuzzy membership functions (MFs) such as Gaussian, P-shaped, Sigmoid, S-shaped and Z-shaped for private Data. Then we cluster modified Datasets by Expectation Maximization (EM) algorithm. Our experimental results show that using fuzzy logic for preserving Data privacy guarantees valid Data Clustering results while protecting sensitive information. The accuracy of the Clustering algorithm using fuzzy Data is approximately equivalent to original Data and is better than the state of the art methods in this field.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 375

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 3
نشریه: 

Scientia Iranica

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    30
  • شماره: 

    1 (Transactions D: Computer Science and Engineering and Electrical Engineering)
  • صفحات: 

    104-115
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    26
  • دانلود: 

    0
چکیده: 

Over recent decades, there has been a growing interest in semi-supervised Clustering. Compared to the supervised or unsupervised Clustering methods for solving different real-life problems, reviewed articles show that semi-supervised Clustering methods are more powerful, and even a small amount of supervised information can significantly improve the results of unsupervised methods. One popular method of incorporating partial supervised information is through labeled Data. In this study, we propose a semi-supervised Clustering algorithm called ConvexClust. The proposed method improves Data Clustering using a geometric view borrowed from the Lune concept in the connectivity index and 10% of labeled Data. Clustering starts with the use of labeled Data and the formation of a convex hull. It continues over the labeling of non-labeled Data and the updating of the convex hull in an iterative process. Evaluations of three UCI Datasets and sixteen artificial Datasets show that the proposed method outperforms the other semi-supervised and traditional Clustering techniques.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 26

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button